OSSTF-Target 3

Junctional failure prevention

Christian Mazel Osmar JS de Moraes

Adjacent level failure

01

Proximal junctional kyphosis (PJK)

Is characterized by increased kyphosis at the upper instrumented vertebra segment (Glatter Spine 2005)

Proximal junctional failure (PJF)

Is the next step that usually requires surgery

Proximal junctional kyphosis

- Radiographic finding with >10° increase of vertebral body kyphosis
- Short-term complication of adult spinal deformity (ASD) surgery
- Not always symptomatic and does not always require additional surgery

Proximal junctional failure

- Clinical presentation with pain, deterioration of balance, and neurological impairment
- Short- to mid-term complication after ASD surgery
- More surgery frequently necessary

Risk factors

Fixation
lengthSagittal
alignmentPoor
bone
bone
healthHigh BMIAge

Fixation length

Proximal junctional kyphosis and proximal junctional failure are common problems after long-segment (>5 levels) thoracolumbar instrumented fusions in the treatment of ASD.

Sagittal alignment

Multifactorial issue, but

Flatback with decrease of **pelvic incidence minus lumbar lordosis (PI-LL) and pelvic tilt (PT)**

- \rightarrow significantly higher risk of PJK
- Flatback with increase of thoracic kyphosis (TK)
- \rightarrow significantly higher risk of PJK

Preventing PJK and PJF

Evaluation of stresses in the upper adjacent levels by preoperative finite element analysis of the future instrumentation

Initial set-up and experience by Osmar JS de Moraes (Sao Paulo)

Construction of geometric models

- Computed tomography images imported into Mimics software (Materialise, Belgium)
- Vertebral bodies segmented according to the different gray-scale values of the vertebral bone and surrounding tissue
- 3D reconstruction using 2D imaging data of the segmented vertebral bodies to produce T1-S1 3D geometric models

Reconstructed Model of T1-S1

+ Ribcage, ligaments, and discs

Material properties used in the model

Component	Young's modulus, MPa	Poisson's ratio	Cross-section, mm ²
Cortical bone	12,000	0.3	
Cancellous bone	100	0.2	
End plate	3,000	0.25	
Anterior longitudinal	15		40
Posterior longitudinal	10		20
Ligamentum flavum	8		30
Interspinous	10		40
Ligamentum flavum	15		40
Intertransverse	10		1.8
Capsular	7.5		30
Nucleus pulposus	1.0	0.499	
Annulus fiber	4.2	0.45	
Fusion mass (Ti)	110,000	0.28	

Young's modulus

Young's modulus can be used to predict the elongation or compression of an object as long as the stress is less than the yield strength of the material.

Stresses at upper end of different constructs

B

Max. stresses on annulus fibrosus at upper adjacent level (Intact) (MPa)

ISL/SSL complex forces on upper adjacent level (MPa) (intact)

Example of top

ending of construct

Selection of nine fusion models and comparison of the maximum von Mises stresses on the pedicle screw

Fusion model	Max. screw stress, MPa	
T2-L5 fusion	106.50	
T4-L5 fusion	48.14	
T10-L5 fusion	45.50	
T11-L5 fusion	44.68	
T12-L5 fusion	42.66	
L1-L5 fusion	49.97	
L2-L5 fusion	48.71	
L3-L5 fusion	47.59	

Opportunities using construction of geometric models

New materials for reinforcement

Expandable screws

Local measure of pressure/axial load using cheap chips

Mechanical models suitable for clinical practice

Proposal by Osmar de Moraes

Feasible technique, not expensive and reproducible in ASD surgery group

Build a tool to prevent PJF?
Customized? Algorithm planning?
Better construction/screws/anterior support size?

Surgical strategy

No specific surgical strategy has definitively shown to lower the risk of PJF as the result of a multifactorial etiology. Different technical options:

- Rod stiffness
- Prophylactic polymethylmethacrylate (PMMA) augmentation
- Bands, tethers, and ligaments
- Soft-landing solutions

Rod stiffness

The use of CoCr rods is effective in ensuring stability of the posterior spinal construct and accomplishment of spinal fusion. Furthermore, **results indicate that junctional kyphosis may occur more frequently in CoCr systems than in Ti systems.**

Increasing the rod stiffness by using CoCr rods can prevent rod breakage but adversely affect the occurrence and the time of PJK.

Prophylactic PMMA cement augmentation

- Aim is to decrease the incidence of PJK and PJF in patients treated with prophylactic PMMA cement augmentation at the uppermost instrumented vertebrae (UIV) and rostral adjacent vertebrae (UIV+1)
- Is one of the most popular solutions today
- Needs cannulated and perforated screws
- Drawback—PMMA leaks

Upper level PMMA supplementation

- Stent
- Vertebroplasty
- Kyphoplasty

Bands tethers ligaments

Sublaminar band placement has been suggested as a possible technique to prevent PJK and PJF but carries the theoretical possibility of a paradoxical increase in these complications as a result of the required muscle dissection and posterior ligamentous disruption.

Soft-landing solutions

Aim

Avoid excessive stress at the instrumentation level upper part of the construct and at the non-instrumented upper levels

Solutions

- Less rigid rods
- Change of rod diameter at upper part of instrumentation
- Flexible device at upper part of instrumentation

Two different diameter rods at the upper level

Option 1:

3.5 mm diameter proximal Ti rod instrumentation and 5.5 mm thoraco lumbar rod instrumentation connected with dominos end-to-end or lateral/lateral

Two different diameter rods at the upper level

Option 2: Rod with two different diameters 3.5–5.5 mm

Upper levels flexible devices

Option 1: Cable

Upper levels flexible devices

Option 2: Bumper

Other flexible devices

